Arithmetic operations


The basic arithmetic operations are addition, subtraction, multiplication and division, although this subject also includes more advanced operations, such as manipulations of percentages, square roots, exponentiation, and logarithmic functions. Arithmetic is performed according to an order of operations. Any set of objects upon which all four operations of arithmetic can be performed (except division by zero), and wherein these four operations obey the usual laws, is called a field.

Addition (+)

Addition is the basic operation of arithmetic. In its simplest form, addition combines two numbers, the addends or terms, into a single number, the sum of the numbers.
Adding more than two numbers can be viewed as repeated addition; this procedure is known as summation and includes ways to add infinitely many numbers in an infinite series; repeated addition of the number one is the most basic form of counting.
Addition is commutative and associative so the order in which the terms are added does not matter. The identity element of addition (the additive identity) is 0, that is, adding zero to any number will yield that same number. Also, the inverse element of addition (the additive inverse) is the opposite of any number, that is, adding the opposite of any number to the number itself will yield the additive identity, 0. For example, the opposite of 7 is -7, so 7 + (-7) = 0.
Addition can be given geometrically as follows:
If
a and b are the lengths of two sticks, then if we place the sticks one after the other, the length of the stick thus formed will be a + b.

Subtraction (−)

Subtraction is the opposite of addition. Subtraction finds the difference between two numbers, the minuend minus the subtrahend. If the minuend is larger than the subtrahend, the difference will be positive; if the minuend is smaller than the subtrahend, the difference will be negative; and if they are equal, the difference will be zero.

Subtraction is neither commutative nor associative. For that reason, it is often helpful to look at subtraction as addition of the minuend and the opposite of the subtrahend, that is ab = a + (−b). When written as a sum, all the properties of addition hold.

There are several methods for calculating results, some of which are particularly advantageous to machine calculation. For example, digital computers employ the method of two's complement. Of great importance is the counting up method by which change is made. Suppose an amount P is given to pay the required amount Q, with P greater than Q. Rather than performing the subtraction P-Q and counting out that amount in change, money is counted out starting at Q and continuing until reaching P. Curiously, although the amount counted out must equal the result of the subtraction P-Q, the subtraction was never really done and the value of P-Q might still be unknown to the change-maker.

Multiplication (×, ·, or *)

Multiplication is the second basic operation of arithmetic. Multiplication also combines two numbers into a single number, the product. The two original numbers are called the multiplier and the multiplicand, sometimes both simply called factors.
Multiplication is best viewed as a scaling operation. If the real numbers are imagined as lying in a line, multiplication by a number, say
x, greater than 1 is the same as stretching everything away from zero uniformly, in such a way that the number 1 itself is stretched to where x was. Similarly, multiplying by a number less than 1 can be imagined as squeezing towards zero. (Again, in such a way that 1 goes to the multiplicand.)
Multiplication is commutative and associative; further it is distributive over addition and subtraction. The multiplicative identity is 1, that is, multiplying any number by 1 will yield that same number. Also, the multiplicative inverse is the reciprocal of any number (except zero; zero is the only number without a multiplicative inverse), that is, multiplying the reciprocal of any number by the number itself will yield the multiplicative identity.


Division (÷ or /)

Division is essentially the opposite of multiplication. Division finds the quotient of two numbers, the dividend divided by the divisor. Any dividend divided by zero is undefined. For positive numbers, if the dividend is larger than the divisor, the quotient will be greater than one, otherwise it will be less than one (a similar rule applies for negative numbers). The quotient multiplied by the divisor always yields the dividend.
Division is neither commutative nor associative. As it is helpful to look at subtraction as addition, it is helpful to look at division as multiplication of the dividend times the reciprocal of the divisor, that is

a/b = a*(1/b)
When written as a product, it will obey all the properties of multiplication.


Examples

Multiplication table



×
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
3
3
6
9
12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
4
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100
5
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
6
6
12
18
24
30
36
42
48
54
60
66
72
78
84
90
96
102
108
114
120
126
132
138
144
150
7
7
14
21
28
35
42
49
56
63
70
77
84
91
98
105
112
119
126
133
140
147
154
161
168
175
8
8
16
24
32
40
48
56
64
72
80
88
96
104
112
120
128
136
144
152
160
168
176
184
192
200
9
9
18
27
36
45
54
63
72
81
90
99
108
117
126
135
144
153
162
171
180
189
198
207
216
225
10
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
11
11
22
33
44
55
66
77
88
99
110
121
132
143
154
165
176
187
198
209
220
231
242
253
264
275
12
12
24
36
48
60
72
84
96
108
120
132
144
156
168
180
192
204
216
228
240
252
264
276
288
300
13
13
26
39
52
65
78
91
104
117
130
143
156
169
182
195
208
221
234
247
260
273
286
299
312
325
14
14
28
42
56
70
84
98
112
126
140
154
168
182
196
210
224
238
252
266
280
294
308
322
336
350
15
15
30
45
60
75
90
105
120
135
150
165
180
195
210
225
240
255
270
285
300
315
330
345
360
375
16
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352
368
384
400
17
17
34
51
68
85
102
119
136
153
170
187
204
221
238
255
272
289
306
323
340
357
374
391
408
425
18
18
36
54
72
90
108
126
144
162
180
198
216
234
252
270
288
306
324
342
360
378
396
414
432
450
19
19
38
57
76
95
114
133
152
171
190
209
228
247
266
285
304
323
342
361
380
399
418
437
456
475
20
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500